010-82449668

EN 中文

Alluxio 助力企业解决分布式云端训练的数据访问难题

这是测试文本,单击 “编辑” 按钮更改此文本。

内容目录

为了提高AI场景下模型训练的准确性、加快速度并降低成本,许多公司都逐步开始在云上实施分布式训练的方案。

两个需要重点解决的问题 

01 数据的可访问性 (Data Accessibility):当数据量大且存储在远端服务中时,如何获取训练数据

02 数据的访问性能 (Performance):如何同时保证元数据访问的低延迟和数据访问的高吞吐量

训练中的I/O挑战 

我们在云上进行模型训练时,总是希望能达到高吞吐量和高效率, 但是给机器学习训练供给数据时经常会遇到下述挑战:

低效的串行化的数据准备:如果采用传统方式访问云存储中的数据,往往要花费较长的时间才能准备好训练集群所需数据。

数据访问速度慢:传统方式获取数据和元数据速度较慢,这将直接影响总体训练效率,甚至成为训练瓶颈。

资源管理易出错:训练集群通常只分配了有限的存储容量,如果在训练前完整复制输入数据至训练集群本地存储,配置和维护存储资源往往难度大且容易出错。

数据不一致:如果复制训练数据到训练集群,通常需要额外的人工干预来确保云存储上的数据与训练数据同步。

本白皮书介绍了如何利用 Alluxio 加快数据访问,实现云上分布式训练的端到端性能提速。部署 Alluxio 后,从云存储加载数据,缓存数据和训练都变得更加简单高效。

此书还展示了如何搭建一套端到端加载训练数据性能的测试框架,以及 Alluxio 与其他训练主流数据供给方案的性能测试比对结果。

 

立即下载白皮书,了解更多精彩内容!

这是测试文本,单击 “编辑” 按钮更改此文本。

Alluxio在B站AI训练场景的应用

哔哩哔哩是中国年轻一代的标志性品牌及领先的视频社区, 经过十年多的发展,围绕用户、创作者和内容,构建了一个源源不断产生优质内容的生态系统,B站已经涵盖7000多个兴趣圈层的多元文化社区,曾获得QuestMobile研究院评选的“Z世代偏爱APP”和“Z世代偏爱泛娱乐APP”两项榜单第一名并入选“BrandZ”报告2019最具价值中国品牌100强。